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ABSTRACT Salmonella enterica is a leading cause of foodborne illnesses globally, 
with significant mortality rates, especially among vulnerable populations. Traditional 
serotyping methods for Salmonella are accurate but expensive, resource-intensive, and 
time-consuming, necessitating faster and more reliable alternatives. This study evaluates 
the IR Biotyper, a Fourier-transform infrared spectroscopy system, in differentiating 
Salmonella serovars. We assessed 458 isolates of nine Salmonella serovars (Infantis, 
Enteritidis, Typhimurium, I,4,[5],12:i:-, Montevideo, Agona, Thompson, Panama, and 
Abony) from diverse sources. The IR Biotyper was used to acquire spectra from these 
isolates. Machine learning algorithms, including support vector machines, were trained 
to classify the isolates. The accuracy of classifiers was validated using a validation set 
to determine sensitivity, specificity, positive predictive value, and negative predictive 
value. Initial classifiers showed high accuracy for Abony, Agona, Enteritidis, and Infantis 
serovars, with sensitivities close to 100%. However, classifiers for S. Typhimurium, S. 
Panama, and S. Montevideo exhibited lower performance. Implementing a hierarchical 
classification system enhanced the accuracy of serogroup O:4 serovars, demonstrating 
that this approach offers a robust framework for Salmonella serovar identification. 
The hierarchical system enables progressive refinement of classification, minimizing 
misclassifications by focusing on serogroup-specific features, making it adaptable to 
complex data sets and diverse serovars. The IR Biotyper demonstrates high potential for 
rapid and accurate Salmonella serovar identification. This study supports its imple
mentation as a cost-effective, high-throughput tool for pathogen typing, enhancing 
real-time epidemiological surveillance, and guiding treatment strategies for salmonello
sis. This method establishes a robust and scalable framework for advancing Salmonella 
serotyping practices across clinical, industrial, and public health domains by leveraging 
hierarchical classification.

IMPORTANCE Early and accurate identification of Salmonella serovars is extremely 
important for epidemiological surveillance, public health, and food safety. Traditional 
serotyping is very successful but is laborious and costly. In this study, we demonstrate 
the promise of Fourier-transform infrared spectroscopy together with machine learning 
as a means for Salmonella serotyping. Using hierarchical classification, we attain optimal 
serovar identification accuracy, particularly for challenging-to-type serogroups. Our 
findings recognize the IR Biotyper as a high-throughput, scalable pathogen typing 
solution that offers real-time data that can enable enhanced outbreak response and 
prevention of foodborne disease. The approach bridges the gap between traditional 
microbiological practice and sophisticated analytical technology, the path to more 
effective, cost-saving interventions in the clinical, industrial, and regulatory settings. 
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Application of these technologies can significantly improve Salmonella surveillance-con
trol and Public Health outcomes.

KEYWORDS Salmonella, serotyping, FT-IR, rapid diagnostic, salmonellosis

S almonella enterica is one of the major causes of foodborne disease, causing more 
than 420,000 deaths worldwide, in 2019 only (1). While salmonellosis commonly 

presents as self-limited gastroenteritis, children under 5 years, adults over 65 years, 
and immunocompromised people are at a higher risk of developing a life-threatening 
severe invasive form of the disease which requires the use of third-generation cepha
losporins, fluoroquinolones, or azithromycin as first-line antibiotics (2). The Salmonella 
genus has two species: S. enterica and Salmonella bongori. Within S. enterica, there are 
six subspecies; however, most human infection is caused by S. enterica subsp. enterica 
(3). Serological typing of the lipopolysaccharide (O) antigen results in more than 40 
Salmonella serogroups, which, when phase 1 (H1) and phase 2 (H2) flagellar antigens 
are included, classify Salmonella in more than 2,600 serovars, according to the White-
Kauffmann-Le Minor scheme (4, 5). Nevertheless, most human cases are caused by only 
a few serovars, such as S. Enteritidis and S. Typhimurium in Europe and the United 
States, where they are responsible for 30%-65% of Salmonella infections, for example 
(6, 7). Moreover, different lineages of these and other less frequent/emerging serovars 
(e.g., Infantis, Newport, Derby, and Heidelberg, among others) are constantly causing 
outbreaks of foodborne disease and have acquired antimicrobial resistance determinants 
against third-generation cephalosporins and fluoroquinolones, limiting the treatment 
options in cases of severe infection (6–12). Therefore, fast and reliable methods for 
identifying Salmonella serovars are required for performing real-time surveillance of 
high-risk/high-burden serovars within a One Health framework, that is, in humans, 
animals, and the environment, as control of human infections caused by this pathogen is 
influenced by its presence in animals and the environment (13).

Currently, the gold standard for Salmonella serovar identification is phenotypic 
serotyping using the White-Kauffmann-Le Minor scheme and antisera targeting the O, 
H1, and H2 antigens. However, this method requires more than 150 specific antisera and 
well-trained experienced personnel (14). Moreover, if only one H antigen is detected, 
additional steps are performed to confirm whether the tested strain is monophasic 
(has only one H antigen) or not. Therefore, traditional serotyping is usually carried out 
in reference laboratories and takes several days to produce results (14, 15). As alterna
tives to traditional serotyping, molecular methods based on detecting serovar-specific 
genetic markers are also available and can produce results in a reduced time (16). 
However, these methods require expensive reactions, additional steps of DNA extraction, 
and/or purification besides bacterial isolation and are focused on a limited number 
of relevant/common serovars (16, 17). Whole-genome sequencing (WGS) coupled with 
in silico serovar prediction has become a powerful tool for Salmonella serotyping, as 
it provides highly accurate typing results and supplies the raw material (the genome 
sequence) for further in-depth characterization of the pathogen (16, 18). Nevertheless, 
there are multiple barriers to the routine implementation of WGS in the clinical setting, 
especially for low-middle-income countries, including high setup and running costs, a 
lack of studies addressing the cost-effectiveness of WGS implementation, and logistic 
challenges about genomic data storage, analysis, and reporting (19). Cost-effective, 
high-throughput serotyping alternatives that can produce results in less than 24 hours
are desirable.

The Fourier-transform infrared (FT-IR) spectroscopy is a vibrational spectroscopic 
technique that can be applied to assess the chemical composition of a sample (20). 
The different vibrational bond energies between the atoms in the sample molecules 
absorb IR radiation at different wavelengths, producing a spectrum characteristic of 
their composition (21). With multiple biological/biomedical applications, such as cell 
imaging, cancer detection, food safety, toxicology, microbiology, and others (21), FT-IR 
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spectroscopy is considered a versatile, fast, and low-cost technique (22). For bacterial 
typing, the spectra obtained by FT-IR spectroscopy can work as fingerprints that allow 
differentiation of bacteria at the species, subspecies, and even serogroup/serotype level 
(23–25), and its application for strain clonality studies, outbreak investigation, and 
bacterial identification is being studied, as it can provide results in less than 4 hours 
at a fraction of the cost of higher resolution techniques such as WGS (15, 26–29). The IR 
Biotyper (Bruker Daltonics GmbH & Co. KG, Germany) is an IR spectrometer coupled to a 
microplate compartment, which, together with the OPUS software, allows the acquisition 
and analysis of FT-IR spectra for multiple bacterial samples (30). The IR Biotyper can be 
trained with different bacteria with the aid of machine-learning algorithms to enable 
the typing of unknown samples. Consequently, the implementation of the IR Biotyper, 
as a low-cost/high-throughput tool for pathogen typing in the clinical microbiology 
laboratory, has been proposed (26, 27). Using this approach, the discrimination of 
clinically relevant Salmonella serogroups has been achieved with high accuracy (15). 
However, FT-IR-based typing of this pathogen at the serovar level is still challenging, 
especially when multiple serovars of the same serogroup are tested (15, 31). To overcome 
this difficulty, a step-wise approach for serovar classification has been proposed, in which 
the step of serovar classification should follow the first step of serogroup classification; 
however, this approach has not yet been evaluated (32). In this study, we tested the 
capabilities of the IR Biotyper using the step-wise approach for the classification of the 
major Salmonella serovars found in the clinical, environmental, and food/avian niches in 
Chile.

MATERIALS AND METHODS

Bacterial collection, culture media, and conditions

A total of 458 well-characterized isolates of S. enterica (corresponding to nine sero
vars) corresponding to Salmonella Infantis (n = 163), Salmonella Enteritidis (n = 117), 
Salmonella Typhimurium (n = 51), Salmonella I,4,[5],12: i:- (n = 16), Salmonella Montevi
deo (n = 6), Salmonella Agona (n = 63), Salmonella Thompson (n = 14), Salmonella 
Panama (n = 16), and Salmonella Abony (n = 12) were used in this study (Table S1).

The isolates were provided by different institutions and investigation centers and 
were obtained from different sources, such as environmental water (n = 277) (33), swine 
stool (n = 1) (34), an equine hospital facility (n = 9) (35), a backyard poultry farm (n = 8) 
(36), poultry meat (n = 35) (12), and clinical human samples (n = 12) (37) from patient 
consultant at Red de Salud UC-CHRISTUS (n = 114). Permission to use the human clinical 
isolates was granted by the Comité Ético Científico de Ciencias de la Salud UC (Protocol 
ID 240621037).

In summary, the isolation and serotyping protocol were conducted by process
ing samples through traditional microbiological techniques. Strain confirmation was 
conducted using molecular methods as outlined by Toro et al. (33). Serovar identification 
was performed through the standard Kaufmann-White-LeMinor agglutination system, 
complemented by molecular approaches (36, 38), as well as in silico analysis based 
on WGS. Table S1 provides detailed information on the collection year, source, and 
methodology for each isolate.

Sample preparation

Strains were stored in 12%–20% glycerol stocks at −80°C before they were retrieved 
on trypticase soy agar (TSA, Biomerieux, France) and passed at least two times before 
subculturing the samples in TSA; each incubation was performed at 37 ± 2°C for 24 
hours. The sample preparation adhered to the manufacturer’s guidelines. Briefly, a 1-µL 
overloaded loop of bacterial colonies was taken from the densely populated area of 
the culture and suspended on 50 µL of a 70% ethanol solution within an IR Biotyper 
suspension vial. After vortexing, 50 µL of deionized water was introduced, and the 
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mixture was thoroughly mixed by vortexing. Next, 15 µL of the bacterial suspension was 
dispensed in three separate technical replicates onto the 96-spot silicon IR Biotyper 
target and left to dry for 15–20 minutes at 35 ± 2°C. For all isolates categorized, 
measurements were taken in three or more distinct biological replicates to ensure a 
more equitable number of spectra for each serovar. As for the quality control, the Infrared 
Test Standards (IRTS 1 and IRTS 2) provided in the IR Biotyper kit were resuspended in
100-µL deionized water, and 60 µL of absolute ethanol was added and thoroughly mixed. 
A 10-µL suspension was then deposited in duplicate onto the IR Biotyper target and 
allowed to dry following the same procedure as the samples.

Spectra acquisition and analysis

Acquisition of spectra was conducted in the UC-Christus Clinical Microbiology laboratory. 
This process involved transmission mode within the spectral range of 3,996–500 cm-1 
(mid-IR), utilizing the IRBT spectrometer and OPUS software version 8.2.28 from Bruker 
Optics GmbH & Co. KG. Spectra processing and visualization was executed using the 
IR Biotyper Client Software from Bruker Daltonics, specifically version 4.0, with default 
settings recommended by the manufacturer. Before acquiring sample spectra, quality 
control measurements (IRTS 1 and IRTS 2) were conducted in each run. For each 
isolate, we obtained at least three spectrums, and to ensure quality, some spectra were 
reprocessed to achieve three correct measurements, obtaining a total of 5,428 spectra for 
the training and validation steps.

Machine learning and development of automated classifiers

The strategy of classification was divided into steps. The first step corresponds to the 
determination of the “O” antigen (O:4, O:7, and O:9) using the “Salmonella serogroup” 
classifier of the IR Biotyper Client Software from Bruker Daltonics (version 4.0), and 
the second step performs the serovar classification. Machine learning (ML) algorithm 
support vector machine (SVM) was utilized to construct the serovar IR-BT automated 
classifiers. The ML undergoes training with a set of well-characterized isolates to identify 
the specific characteristics of each serovar, and ML algorithm learns to recognize knowns,
obtaining a real-time classification.

Accuracy was automatically calculated by the IR Biotyper software using a confusion 
matrix. The matrix determines the class recall as the percentage of correctly predic
ted spectra among all true spectra, considering uncertain spectra as errors. The class 
precision is calculated as the ratio of true positive cases to the sum of true positive and 
false positive cases, corresponding to the positive predictive value (PPV). Additionally, 
overall accuracy is computed as the proportion of all true positive cases relative to the 
total number of cases. Sensitivity is defined as the ratio of true positive cases to the 
sum of true positive and false negative cases, excluding uncertain cases. Specificity is 
calculated by dividing the number of true negative cases by the sum of true negative 
and false positive cases. Meanwhile, the negative predictive value (NPV) is determined as 
the ratio of true negative cases to the sum of true negative and false negative cases.

To better understand the clustering performance of the serovars, we performed a 
linear discriminant analysis (LDA) using IR Biotyper Client software version 4.0. The 
parameters of the classification algorithms, such as the number of principal compo
nents (PCs) and the C-value or cost value, which evaluate the penalty associated with 
misclassification errors made by the model during training, were optimized through a 
trial-and-error process for maximum accuracy. The classifier version that produced the 
best results was selected and further validated with an external testing set to ensure 
robustness and reliability (32). The steps described above were performed using the IR 
Biotyper software version 4.0. The variance of each LDA was calculated by the software.

For more detailed information about the equipment software,
visit https://www.bruker.com/en/applications/microbiology-and-diagnostics/food-bev
erage-microbiology/ir-biotyper-for-food-microbiology.html (30).
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O-antigen classifier validation

To validate the O-antigen classifier integrated into the equipment, a comprehensive 
analysis was conducted using the total of isolates (n = 458) corresponding to the 5,428 
spectra, which included representations from the serogroups O:4 (S. Typhimurium, S. 
I,4,[5],12:i:-, S. Abony, S. Agona), O:7 (S. Infantis, S. Montevideo, S. Thompson), and O:9 (S. 
Enteritidis, and S. Panama).

Serogroup O:4 training and validation

Serovars with more than five isolates per type were chosen. The proportion of training 
and validation depends on the heterogeneity within each group (O:4, O:7, O:9). The total 
isolates, together with their corresponding spectra, were divided into two randomized 
data sets, and the larger percentage was used for training and the remaining for 
validation.

For the first training set, we focused on serogroup O:4, which includes the serovars 
spectra S. Typhimurium (n = 583 and S. I,4,[5],12: i:- (n = 219), S. Agona (n = 889), and 
S. Abony (n = 103). Serovars S. Typhimurium and S. I,4,[5],12: i:- were used as a single 
target called S. Typhimurium/Monophasic (n = 802). Out of the total spectra obtained 
(n = 1,794), 80% (n = 1,460) were included in the training set (Table S1), these spectra 
belong to a subset of isolates (n = 109). The remaining 20% of the spectra (n = 334) were 
used for the validation set; these spectra belong to the remaining isolates (n = 33).

Serogroup O:7 training and validation

In the second round of training, we focused on serovars from serogroup O:7, including 
spectrums of the serovars S. Infantis (n = 1,681), S. Thompson (n = 200), and S. Montevi
deo (n = 45), generating a total of 1,926 new spectra. Of these new spectra, 58% (n 
= 1,113) were incorporated into the training set; these spectra belong to a subset of 
isolates (n = 104). The remaining 42% (n = 813) were added to the original validation data 
set; these spectra belong to the remaining isolates (n = 79).

Serogroup O:9 training and validation

In the third round of training, we focused on serovars from serogroup O:9, including S. 
Enteritidis (n = 1528) and S. Panama (n = 180). Out of a total of 1,708 spectra, 80% (n = 
1,393) were used for classifier development; these spectra belong to a subset of isolates 
(n = 107), while the remaining 20% (n = 315) were included in the validation set; these
spectra belong to the remaining isolates (n = 26).

TABLE 1 Confusion matrix for the validation of O-antigena

Class predicted

O:4 O:7 O:9 Uncertain Class recall

Actual class Panama 0 0 180 0 100%
Thompson 0 200 0 0 100%
Typhimurium/1,4,[5],12: i:- 801 0 0 1 100%
Abony 103 0 0 0 100%
Agona 889 0 0 0 100%
Enteritidis 0 0 1,528 0 100%
Infantis 0 1,681 0 0 100%
Montevideo 0 45 0 0 100%
Class precision 100% 100% 100%

aAccuracy: 100% (5,427/5,428).

Research Article Microbiology Spectrum

Month XXXX  Volume 0  Issue 0 10.1128/spectrum.00159-25 5

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/s

pe
ct

ru
m

 o
n 

28
 M

ay
 2

02
5 

by
 1

90
.1

53
.2

09
.1

46
.

https://doi.org/10.1128/spectrum.00159-25


RESULTS

O-antigen classifier validation

In the analysis of the total of 5,428 spectra, the O-antigen classifier validation achieved 
100% accuracy, correctly predicting the serogroup of each one of the spectra; detailed 
accuracy values are provided in Table 1.

FIG 1 3D scatter plot of the third training performed, showing the distribution of serovars of Salmonella 

serogroup O:4 species in IR spectral space. A total of 30 PCs were used to create a LDA by serovar. The 

spectra are colored according to the serovars: red squares: S. Agona; cyan triangles: S. Abony; gray circles: 

S. Typhimurium/ I,4,[5],12:I:-.Every symbol represents a different isolate.
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Serogroup O:4 training and validation

The ML algorithm used to construct the initial training model was a Library for Support 
Vector Machines with a Radial Basis Function (LIB_SVM_RBF). This process involved the 
spectral range of 1,300–800 cm−1 and was performed with PC30 and a C-value of 50 
(Fig. 1). In total, 334 spectra were analyzed to perform the validation step. The automa
ted classifiers for S. Abony showed the best performance (Table 2), achieving 100% 
sensitivity, specificity, PPV, and NPV, followed by the S. Agona and S. Typhimurium/1,4,
[5], 12: i:- (Table 3). The LDA analysis showed that the isolates belonging to the Agona 
serovar exhibited a better clustering performance compared to the rest of the developed 
classifiers, followed by the serovar Abony and then S. Typhimurium/1,4,[5],12: i:-.

Serogroup O:7 training and validation

The ML algorithm developed for this training was LIB_SVM_RBF, which involved a 
spectral range of 1,300–800 cm−1. SVM was performed with PC30 and a C-value of 
50. Following validation, the S. Infantis classifier demonstrated the highest performance 
(Table 4), achieving 100% sensitivity, 94% specificity, 99% PPV, and 100% NPV. The 
S. Thompson classifier had the second-best performance, with 98% sensitivity, 100% 
specificity, 100% PPV, and 99% NPV. Finally, the S. Montevideo classifier achieved 67% 
sensitivity, 100% specificity, 100% PPV, and 99% NPV (Table 5). The LDA clustering 
analysis showed three well-separated groups of spectra: Thompson (red) exhibits more 
dispersion among the spectra; on the other hand, Infantis (grey) and Montevideo (cyan), 
both groups of spectra are more concentrated and exhibit well-characterized clusters 
(Fig. 2).

Serogroup O:9 training and validation

This training utilized 1,393 spectra, employing SVM across a spectral range of 1,300–800 
cm−1, with parameters set to PC30 and C-value 2. Following validation set analysis, the 
best-performing classifier was S. Enteritidis (Table 6), achieving 100% sensitivity, 80% 
specificity, 98% PPV, and 100% NPV and S. Panama with 80% sensitivity, 100% specific-
ity, 100% PPV, and 98% NPV (Table 7). Analysis of LDA clustering showed a distinct 
separation of S. Enteritidis (grey) and S. Panama (red) (Fig. 3).

DISCUSSION

S. enterica is one of the most significant foodborne pathogens globally, posing substan
tial threats to both economic stability and public health. Identifying the specific serovar 
causing a clinical case is critical, as it allows for rapid and effective interventions, thereby 
mitigating outbreaks and preventing the further spread of infection. In this study, 
we propose a novel sub-typing method for Salmonella based on FT-IR, emphasizing 

TABLE 2 Confusion matrix for the validation of O:4 classifiera

Class predicted

Typhimurium/ 1,4,[5],12: i:- Abony Agona Uncertain Class recall

Actual class Typhimurium/ 1,4,[5],12: i:- 89 0 2 5 93% (89/96)
Abony 0 38 0 0 100% (38/38)
Agona 0 0 198 2 99% (198/200)
Class precision 100% 100% 99%

aAccuracy: 97% (325/334).

TABLE 3 Values of sensitivity, specificity, PPV, and NPV per serogroup O:4

Sensitivity Specificity PPV NPV

Typhimurium/ 1,4,[5],12: i:- 98% 100% 100% 99%
Abony 100% 100% 100% 100%
Agona 100% 98% 99% 100%
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its advantages over traditional or existing approaches. By leveraging discriminatory 
features identified during training, our classifiers enable the automatic categorization 
of unidentified samples using a marker model computed from a collection of training 
spectra. These automated classifiers are designed to seamlessly categorize isolates 
during spectrum measurement, with a particular focus on S. enterica serovars. To achieve 
our goal of developing a rapid and accurate Salmonella typing method, it is important 
to acknowledge the complexity involved. Differentiation among the approximately 2,600 
serovars of Salmonella primarily relies on antigenic (phenotypic) distinctions.

As an initial step, the serogroup classifier was validated using the complete set of 
spectra, demonstrating high performance for each serogroup classifier (Table 1). Based 
on these results, we can infer that the integrated algorithm exhibits robust discrim
inatory capacity, effectively clustering spectra according to their serogroups. Similar 
findings were reported by Campos et al. (31), who evaluated the discriminatory power of 
FT-IR in distinguishing Salmonella serogroups and serovars. By developing algorithms 
to differentiate various serogroups and serovars within the same serogroup, their 
study found that the algorithm achieved high performance in discriminating among 
serogroups O:9, O:7, O:1, O:3, O:19, and O:4. Furthermore, the algorithm demonstra
ted high typification accuracy in distinguishing between serovars within the same 
serogroup, indicating its effectiveness in identifying and grouping spectrum features 
by serovar. It should be noted that different sources of isolates were used (animal, 
human, and environmental); however, no differences were evident based on the source 
of isolates. This could be attributed to the fact that most of the serovar analyzed are 
zoonotic, so it would be expected that there would be no differences between the 
different sources. Therefore, the possibility of overlap between serovars of the same 
serogroup could be attributed to structural similarities.

Based on the validation results for the integrated serogroup classifier and build
ing upon previous studies (15, 31, 39), we propose the development of a subtyping 
algorithm to identify serovars from specific serogroups. This approach leverages the 
existing serogroup training incorporated into the IR Biotyper software developed by 
Cordovana et al. (15). This methodology uses a pre-established serogroup classifica-
tion algorithm as the initial analytical step, followed by a serogroup-specific serovar 
classification algorithm to enhance typing performance by minimizing variability among 
trained features.

The best-performing classifiers validations for each serogroup were S. Abony (O:4), 
S. Infantis (O:7), and S. Enteritidis (O:9). The analysis of the O:4 classifier results reveals
three distinct clusters, each representing a serovar: S. Abony, S. Agona, and S. Typhimu
rium/I,4,[5],12:i:-. Among them, the S. Agona cluster is the most clearly definerouped 
closely together and distinctly separated from the others. In contrast, the S. Abony and 
S. Typhimurium/I,4,[5],12:i:- clusters are positioned near each other, obtaining similar 
results in the training confusion matrix (data not shown). Although this suggests that 

TABLE 4 Confusion matrix for the validation of O:7 classifiera

Class predicted

Thompson Infantis Montevideo Uncertain Class recall

Actual class Thompson 103 2 0 0 98% (103/105)
Infantis 0 691 0 2 99% (691/693)
Montevideo 0 5 10 0 67% (10/15)
Class precision 100% 99% 100%

aAccuracy: 99% (804/813).

TABLE 5 Values of sensitivity, specificity, PPV, and NPV per serogroup O:7

Sensitivity Specificity PPV NPV

Thompson 98% 100% 100% 99%
Infantis 100% 94% 99% 100%
Montevideo 67% 100% 100% 99%
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S. Agona has the best-defined cluster, the validation confusion matrix indicates that S. 
Abony had the best overall performance, as it correctly identified all its spectra, despite 
being closely grouped with S. Typhimurium/I,4,[5],12:i:- in the LDA analysis (Fig. 1; Tables 
2 and 3). The S. Agona classifier, though well-defined in LDA, failed to identify approxi
mately 1% of the total spectra. Meanwhile, the S. Typhimurium/I,4,[5],12:i:- classifier had 
the lowest performance, misclassifying or failing to identify around 8% of its spectra (Fig. 
1; Table 2).

The serogroup O:7 classifier validation indicated that the S. Thompson and S. Infantis 
classifier was the one that exhibited the best performance, correctly identifying a large 

FIG 2 3D scatter plot of the third training performed, showing the distribution of serovars of Salmonella 

serogroup O:7 species in IR spectral space. A total of 30 PCs were used to create a LDA by serovar. The 

spectra are colored according to the serovars: red squares: S. Thompson; cyan triangles: S. Montevideo; 

gray circles: S. Infantis. Every symbol represents a different isolate.
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number of spectra; this is exhibited in the LDA representation, where the spectra were 
grouped in a well-identified cluster. Finally, the S. Montevideo classifier exhibited the 
worst performance, misclassifying one-third of the total spectrum, even when the LDA 
indicated a well-characterized and separated cluster group (Tables 4 and 5; Fig. 2). The 
small number of S. Montevideo isolates and spectra could contribute to the misclassifica-
tion because the classifier improves predictive performance as the number of training 
spectra increases isolates.

Analyzing the results obtained for the serogroup O:9 classifier validation, the best 
performance was obtained by the S. Enteritidis classifier, correctly identifying almost 
100% of spectra. The performance exhibited by the S. Panama classifier is acceptable 
based on the number of total spectra utilized for the training set, compared with the S. 
Enteritidis classifier (Tables 6 and 7).

As we can evidence in our results, the best performance was not always reached 
by the classifier that was developed utilizing a higher number of spectra, like some 
classifiers that exhibited high performance but a lowest number of spectra in the training 
set; on the other hand, we also evidence that some classifiers, developed with the 
high number of spectra, also exhibited high performance. This result suggests that the 
number of required spectra to develop a high-accuracy classifier may differ by each 
strain type. Additionally, the optimal size for training an SVM model remains uncertain, 
with no consensus in the existing literature regarding the recommended data size. 
Recommendations range from hundreds (40) to thousands (28, 29). Based on these 
suggestions, the number of spectra considered in our study falls within the acceptable 
range for training and validation data set sizes. Despite this, the investigation could 
benefit from additional data, as this could further improve the discriminatory power 
more accurately and robustly by including data processing techniques, such as removal 
of outlier data and spectra reprocessing (41, 42). We maintain that proper data process
ing practices, coupled with continuous training and the development of new hierarchi
cal typing algorithms to improve discriminatory power by minimizing the number of 
trainable features, may have a positive impact on the performance of newly developed 
classifiers.

Conclusions

Based on our study, we have learned valuable insights into the application of FT-IR 
technology for Salmonella serotyping. Our findings demonstrate its effectiveness in 
discriminating between Salmonella serogroups O:9, O:7, and O:4, including key serovars 
such as Typhimurium, Enteritidis, and Infantis. To maximize serovar typing accuracy, 
we recommend focusing the training set on serovars within the same serogroup and 
minimizing isolate diversity. In our study, successful serovar identification was achieved, 
underscoring the importance of adequate training data. We encountered limitations 
during our research about the number of isolates available by each desired serovar: some
of them were represented by under 10 isolates and others above a hundred isolates. 

TABLE 6 Confusion matrix for the validation of O:9 classifiera

Class predicted

Panama Enteritidis Uncertain Class recall

Actual class Panama 20 5 0 80% (20/25)
Enteritidis 0 289 1 100% (289/290)
Class precision 100% 98%

aAccuracy: 98% (309/315).

TABLE 7 Values of sensitivity, specificity, PPV, and NPV for the validation per serogroup O:9

Sensitivity Specificity PPV NPV

S. Panama 80% 100% 100% 98%
S. Enteritidis 100% 80% 98% 100%
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Interestingly, the number of isolates by serovar is not directly related to the accuracy of 
the developed classifier.

Accurate identification of Salmonella serovars has far-reaching implications across 
multiple sectors, including clinical diagnostics, epidemiological surveillance, and various 
branches of the food industry. By improving the speed and accuracy of serovar 
identification, advanced technologies like the IR Biotyper provide solutions to long-
standing challenges in public health and industrial settings.

To maximize the impact of these technologies, we recommend ongoing validation, 
training data set updates, and adaptation to local and emerging Salmonella serovars. By 

FIG 3 3D scatter plot of the third training performed, showing the distribution of serovars of Salmonella 

serogroup O:9 species in IR spectral space. A total of 30 PCs were used to create a LDA by serovar. The 

spectra are colored according to the serovars: red triangles: S. Panama; gray circles: S. Enteritidis. Every 

symbol represents a different isolate.
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doing so, advanced serotyping methods can remain reliable, scalable, and effective in 
addressing public health challenges, supporting surveillance efforts and improving food 
safety practices across industries.

These applications underscore the versatility and potential of advanced serotyping 
technologies to bridge the gap between scientific innovation and practical solutions in 
diagnostics, surveillance, and industry.
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